Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099352

ABSTRACT

Since the 2019-nCoV outbreak was first reported, hundreds of millions of people all over the world have been infected. There is no doubt that improving the cure rate of 2019-nCoV is one of the most effective means to deal with the current serious epidemic. At present, Remdesivir (RDV) has been clinically proven to be effective in the treatment of SARS-CoV-2. However, the uncertain side effects make it important to reduce the use of drugs while ensuring the self-healing effect. We report an approach here with targeted therapy for the treatment of SARS-CoV-2 and other coronaviruses illness. In this study, mesoporous silica was used as the carrier of RDV, the nucleocapsid protein (N protein) aptamer was hybridized with the complementary chain, and the double-stranded DNA was combined with gold nanoparticles as the gates of mesoporous silica pores. When the RDV-loaded mesoporous silica is incubated with the N protein, aptamer with gold nanoparticles dissociate from the complementary DNA oligonucleotide on the mesoporous silica surface and bind to the N protein. The releasing of RDV was determined by detecting the UV-vis absorption peak of RDV in the solution. These results show that the RDV delivery system designed in this work has potential clinical application for the treatment of 2019-nCoV.


Subject(s)
Aptamers, Nucleotide , COVID-19 Drug Treatment , Metal Nanoparticles , Nanoparticles , Humans , Silicon Dioxide , SARS-CoV-2 , Gold
2.
Biosens Bioelectron ; 213: 114436, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1944325

ABSTRACT

The emergence of the COVID-19 epidemic has affected the lives of hundreds of millions of people globally. There is no doubt that the development of fast and sensitive detection methods is crucial while the worldwide effective vaccination programs are miles away from actualization. In this study, we have reported an electrochemical N protein aptamer sensor with complementary oligonucleotide as probe for the specific detection of COVID-19. The electrochemical aptasensor was prepared by fixing the double-stranded DNA hybrid obtained by the hybridization of N protein aptamer and its Fc-labeled complementary strand on the surface of a gold electrode. After incubation with the target, the aptamer dissociated from the labeled complementary DNA oligonucleotide hybrid to preferentially bind with N protein in the solution. The concentration of N protein was measured by detecting the changes in electrochemical current signals induced by the conformational transformation of the complementary DNA oligonucleotide left on the electrode surface. The sensor had a linear relationship between the logarithm of the N protein concentration from 10 fM to 100 nM (ΔIp = 0.098 log CN protein/fM - 0.08433, R2 = 0.99), and the detection limitation was 1 fM (S/N = 3). The electrochemical aptamer sensor was applied to test the spiked concentrations of throat swabs and blood samples from three volunteers, and the obtained results proved that the sensor has great potentials for the early detection of COVID-19 in patients.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , DNA, Complementary , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL